

ASX RELEASE

21 December 2022

COMPANY

ASX: SNG ACN: 619 211 826

CAPITAL STRUCTURE

Shares: 116,925,475 Options:14,293,262

BOARD

Brian Rodan Managing Director

Paul Angus Technical Director

Keith Murray Non-Executive Director

Sebastian Andre Company Secretary

CONTACT

Level 2 41-43 Ord Street West Perth WA 6005 t: +61 6458 4200 e: admin@sirengold.com.au w: sirengold.com.au

PROJECTS

Siren awarded important strategic tenement

Siren Gold Limited (ASX: SNG) (Siren or the Company) is pleased to announce that it has been granted an exploration permit that covers part of the expired Globe **Progress** mining permit at Reefton.

This tenement is in the centre of the 35km long structural corridor that hosts the largest mines in the **Reefton Goldfield** and extends Siren's very promising **gold - stibnite** mineralisation a further 10kms from **Auld Creek to Big River**.

Highlights

- The Cumberland permit comprises the northern and southern part of OceanaGold's previous Globe Progress mining permit.
- The total Globe Progress Mine gold production was 1.1Moz @ 6g/t Au, including 420koz @ 12.2g/t Au underground and 700koz @ 2g/t Au from an open pit.
- The Cumberland permit has a historic production of 45koz @ 14.2g/t Au.
- There remains **substantial existing infrastructure**, including a water treatment plant and [1.2Mtpa] processing capacity on the Globe Progress Mine adjacent to the permit.
- The Cumberland permit mineralisation extends for 3kms south of the Globe Progress Mine and is open to the west (under cover) and to the south.
- The Cumberland tenement follows the main structural corridor that hosts the the larger mines in the Reefton Goldfield and links to Siren's very promising Auld Creek **Au-Sb** prospect.
- The stibnite and gold mineralisation extends for 10kms from Auld Creek south through Globe Progress, Souvenir, Supreme and Big River.
- The targets include **Supreme** prospect, which extends south from the Globe Progress open pit and contains three shoots that extend to 200m and are open at depth.
- Supreme drillhole intersections include 14m @ 3.5g/t Au and 9.5m @ 4.1g/t Au. The drillholes were not analysed for stibnite and the mineralisation extends SE under cover and is untested.
- High-grade quartz reefs extend for 3kms to the south through Inkerman Gallant, Sir Francis Drake, Merrijigs and Exchange group of workings.
- Significant drillhole intersections from these propsects include (true widths)
 5m @ 74.9g/t Au (Gallant), 4.2m @ 16.7g/t (Merrijigs) and 9.0m @ 6.1g/t Au (Inkerman).

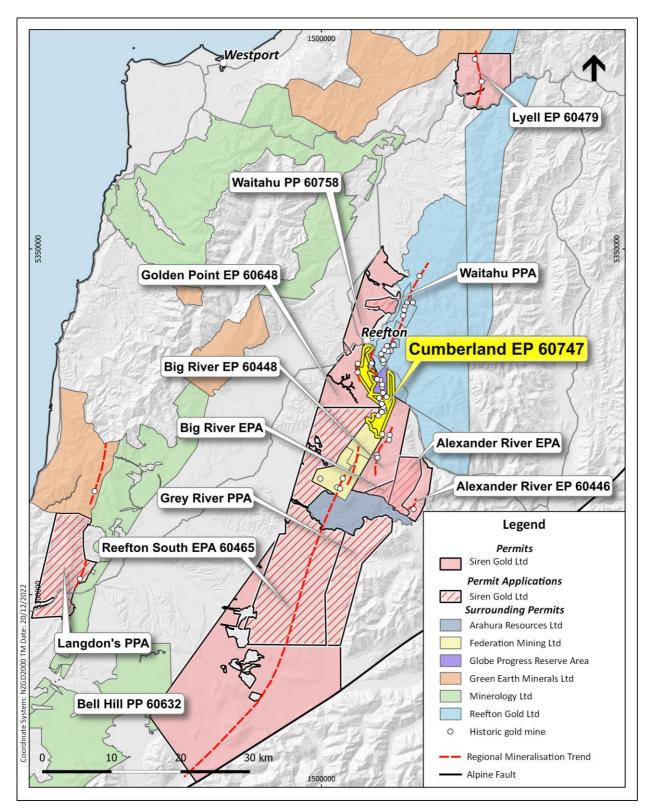


Figure 1. Reefton tenement plan showing new Cumberland permit highlighted in yellow.

Background

The Globe Progress Mine has produced over **1.1Moz** @ **6g/t Au**, the largest mine in the Reefton Goldfield, followed by Blackwater (740koz @ 14.2g/t Au). The Globe Progress Mine produced 420koz @ 12.2g/t Au until 1926 when it closed. The mine extended down to 420m below the surface where the mineralisation was offset by the Chemist Shop Fault and the displaced mineralisation was never found. Oceana Gold Limited (OGL) re-opened the mine as an open pit in 2007 and mined the low grade remnant mineralisation down to around 200m when the mine closed in 2015, when the gold price was ~A\$1,500 compared to over A\$2,600 currently. OGL extracted approximately 700koz @ 2g/t Au, taking the total gold production to around 1.1Moz @ 6g/t Au.

OGL surrendered the Globe Progress mining permit in 2019. New Zealand Petroleum and Minerals (NZP&M) split the mining permit into two areas. The area containing the Globe Progress open pit, processing plant, tailings storage facility (TSF) and waste rock stacks was reserved until 6 December 2023, while site rehabilitation is being completed. The remaining permit area became open ground as Newly Available Acreage (NAA) in October 2020. Under NAA the ground is opened for applications before a set close-off date. Applications are then reviewed by NZP&M and the permit granted to the applicant they consider to have the best work program to evaluate the mineral potential.

Siren was granted an exploration permit for the non-reserved area on 14 December 2022 for an initial period of 5 years. The Cumberland permit comprises the northern and southern areas of the previous Globe Progress mining permit, as shown in Figures 1 and 2. The Cumberland permit joins Siren's Big River, Golden Point and Reefton South permits (Figure 2) and abuts the Federation Mining permit, where they are currently developing the Snowy River underground mine to extract around 700koz of gold below the historic Blackwater mine.

Historical Production

Gold bearing reefs in the Cumberland project area were first discovered at Supreme in 1872 and mining proceeded from then until 1923 when Sir Francis Drake mine closed.

Relative to the rest of the Reefton Goldfield, the Cumberland mines were undercapitalised and worked in small and limiting claims. There was some major development in the area with a 1.2km long adit driven in from Rainey Creek under the Supreme and Inkerman mines to Inkerman West mine. A 600m adit was driven under the Golden Lead mine. Total production from the area was 44,626 oz of gold from 97,993 tonnes of ore at an average grade of 14.2 g/t Au (Table 1).

Mine	Quartz (t)	Gold (oz)	Recovered Gold (g/t)
Supreme	22,214	5,268	7.4
Inkerman	21,020	6,102	9.0
Inkerman South	90	270	93.3
Inkerman West	7,282	6,035	25.8
Scotia	594	1,284	67.2
Gallant	2,340	759	10.1
Sir Francis Drake	16,987	5,810	10.6
Merrijigs	259	84	10.1
Cumberland	13,896	13,631	30.5
Exchange – Industry	511	259	15.8
Golden Lead – OK	11,379	2,645	7.2
A1	1,361	2,479	56.7
Total	97,993	44,626	14.2

Table 1. Historic production from the Cumberland Exploration permit.

Exploration Potential

The mineralisation in the Cumberland permit extends for 3kms south of the Globe Progress mine and is open to the west (under cover) and south (Figures 2 and 3). This area lies along the main structural corridor that hosts all the larger mines in the Reefton Goldfield and links to Siren's very promising Auld Creek **Au-Sb** prospect. The gold and stibnite mineralisation extends for 10kms from Auld Creek south into the Globe Progress Mine, including the Globe Deeps area below the open pit, through Souvenir, Supreme and Big River (Figure 4). A total of 77 drillholes for a total of 10,933m have been completed.

The Supreme soil geochemistry shows a strong arsenic anomaly trending SE under the cover (Figures 3 and 4). The strong broad arsenic and stibnite soil anomaly at the Golden Lead / A1 in the southern end of the permit remains unexplained but is associated with stockwork gold mineralisation at A1. This anomaly abuts the cover to the east and it is likely that the mineralisation will extend under the cover and could link up with Supreme and potentially Big River (Figures 3 and 4). An ionic leach survey will be undertaken over the cover to see if mineralisation under the cover can be detected. The A1 anomaly also remains open to the south.

Supreme gold mineralisation is a similar style to the Globe-Progress deposit, with high-grade quartz breccia, pug and disseminated sulphides. Supreme contains three sub-parallel mineralised shoots that have been traced down dip for approximately 200 metres and are open at depth. The shoots plunge moderately to the SE, with an average thickness of approximately 12 metres. Significant intersections are shown in Table 2 and include 10m @ 3.5g/t Au and 14m @ 3.5g/t Au (RDD013), 11m @ 3.2g/t Au (RDD017), 13m @ 2.6g/t Au (RDD018), 9.5m @ 2.3g/t Au (RDD021) and 9.5m @ 4.1g/t Au (RDD025). The Supreme drill samples were generally not analysed for stibnite, which will be undertaken in Q1 2023.

A1 high-grade quartz reefs located within a shear zone extends for 3kms from Inkerman south through Gallant, Sir Francis Drake, Merrijigs and Exchange group of workings (Figure 3).

At Inkerman, gold mineralisation is primarily contained within lenticular quartz lodes with similar styles and grades to the Blackwater mine, however, there is a small halo of arsenopyrite-gold mineralisation. The reef extended for 100m on surface and was mined down to 97m below surface, with a vein thickness ranging from 0.3 to 2.1m. Drillhole 97RDD022 was drilled below the old mine workings and intersected **9m @ 6.1g/t Au from 107m** (Table 2) indicating that the mineralisation remains open at depth.

Gallant contains a shear hosted, 1m-5m thick quartz vein, that extends for over 300m and dips steeply east and west. Diamond hole GLA001 was drilled to the west and appears to have drilled obliquely down a steeply west dipping reef. The hole intersected a 27m mineralised zone dominated by a quartz reef with visible gold (Figure 5) and disseminated arsenopyrite mineralisation in the hangingwall. The true thickness of the mineralised zone is unclear but estimated to be around 5m. The average down-hole grade of the mineralised zone was 27m @ 74.9g/t Au, which includes 1m @ 1,911g/t Au.

The **Merrijigs** mineralisation extends for around 1.5kms from Sir Francis Drake to Exchange. The shear zone dips to the west and has a true widths between 1m and 6.5m. Significant drillholes shown in Table 2 include: **3.3m** @ **5.1g/t** Au (GLA004), **6.5m** @ **4.0g/t** Au (87DDMJ02) and **4.2m** @ **17.6g/t** Au (HVS003). Gold mineralisation is associated with disseminated arsenopyrite in sheared argillite, black pug breccias and minor grey quartz veins.

The Golden Lead – A1 mineralisation lies a few hundred metres to the west of Merrijigs. A mineralised zone is up to 27m wide, containing mostly narrow quartz stockwork veinlets within a crushed sandstone unit. Very little mapping has taken place since CRAE first explored the area and mapped and sampled the underground workings in the 1980's. The broad arsenic soil anomaly up to 1km wide and open to the south and east under cover, and is largely undrilled (Figure 4), is unexplained and is a key target.

To the north of Globe Progress the Cumberland permit contains anomalous arsenic soil geochemistry that extends into the southern Auld Creek area (Figure 3). To date Siren has been focussed on central Auld Creek around RDD0087 but will start exploring south into this area in 2023.

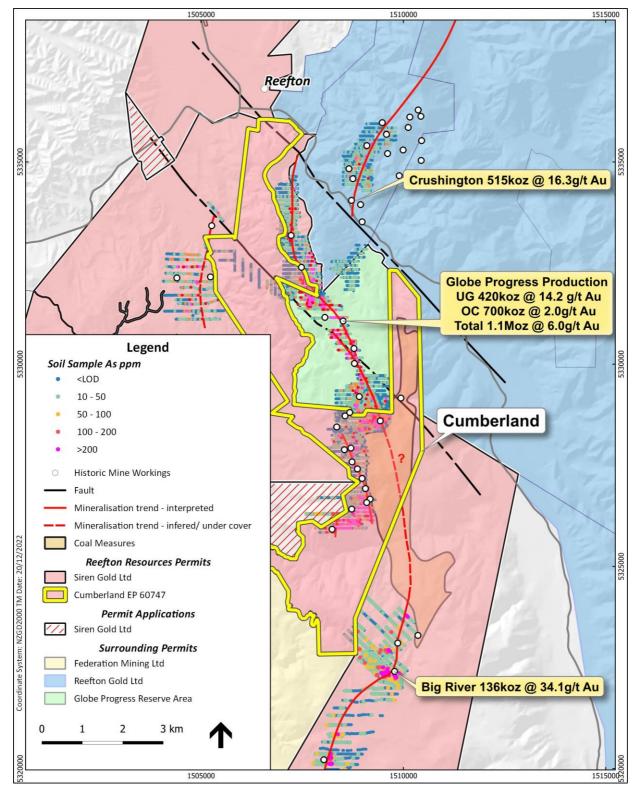


Figure 2. Tenement plan and arsenic soil geochemistry in the new Cumberland exploration permit.

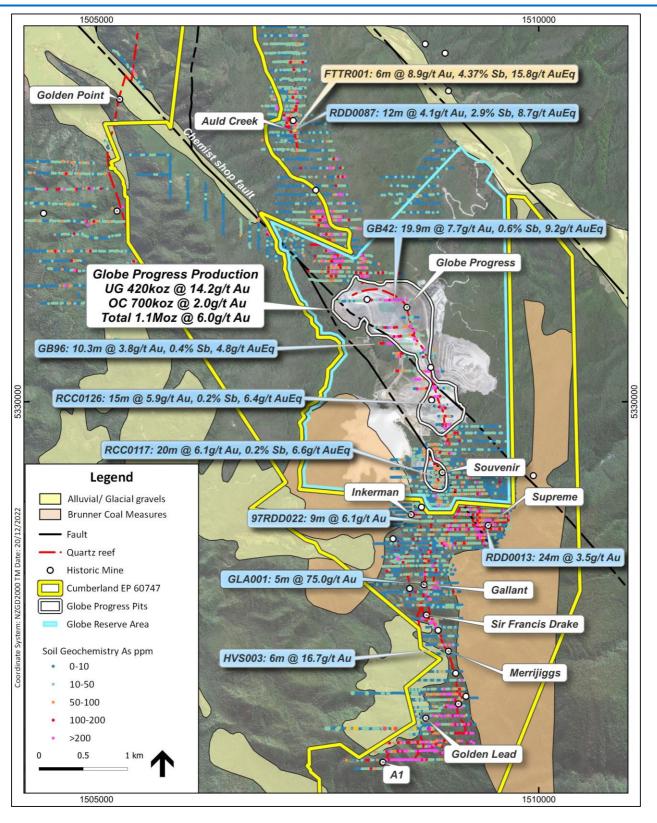


Figure 3. Cumberland exploration permit showing arsenic soil geochemistry, historic mines and significant drillhole intersections. The Globe Progress and Souvenir open pits were completed in 2015.

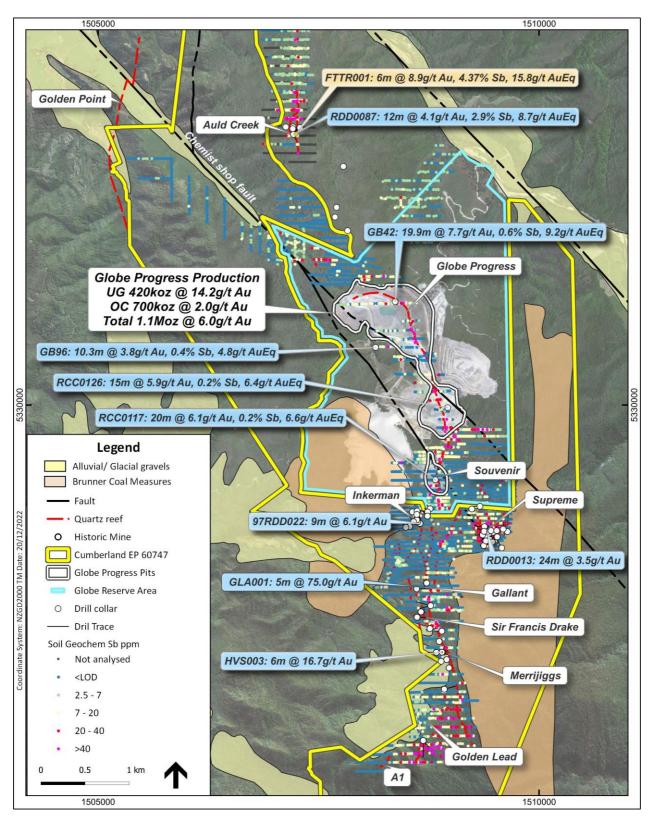


Figure 4. Cumberland exploration permit showing stibnite soil geochemistry, drillhole collars (white dots) and significant drillhole intersections.

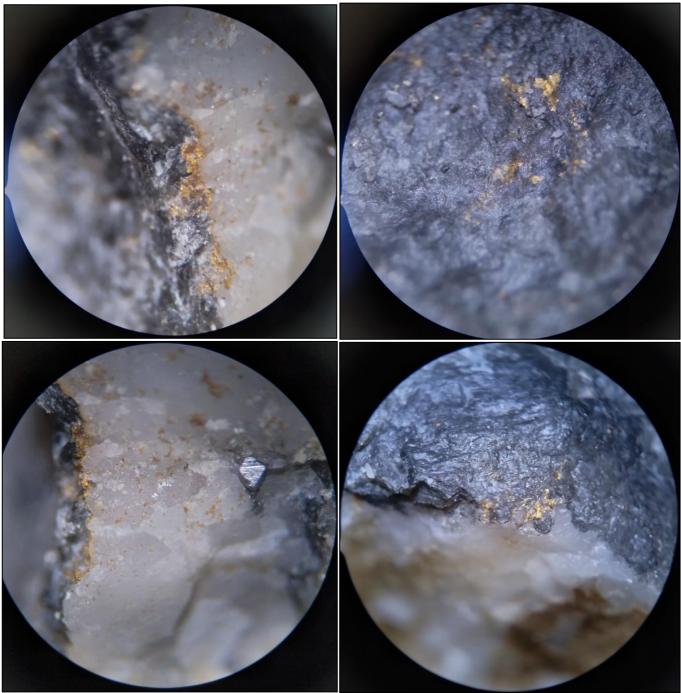


Figure 5. Visible gold in diamond hole GLA001at Gallant.

Management Comment

Siren Gold Managing Director, Brian Rodan, commented: "The significance of the addition of the Cumberland Permit to Siren Gold's contiguous ~1,000 km2 Tenement package should not be underestimated. With our tenements abutting Reefton Goldfields at one end and Federation Mining at the other and along with the existing substantial infrastructure and the 1.25Mtpa processing capacity on the Globe Progress Mine adjacent to the Cumberland Permit has the potential to pave the way for future development".

Hole ID	Prospect	From	То	Interval (m)	True Width (m) ¹	Au g/t
97RDD022	Inkerman	107.0	116.0	9.0	9.0	6.1
97RDD029	Inkerman	17.0	19.0	2.0	2.0	11.8
GAL001	Gallant	31.0	58.0	27.0	5.0	74.9
including		47.0	48.0	1.0	0.2	1,911.0
GAL002	Gallant	34.7	37.5	2.8	2.8	6.3
GAL004	Sir Francis	207.8	211.1	3.3	3.3	5.1
87DDMJ2	Merrijigs	38.3	47.1	8.8	6.5	4.0
HVS003	Merrijigs	54.0	60.0	6.0	4.2	17.6
including		58.0	58.5	0.5	0.4	198.0
RDD0013	Supreme	37.0	47.0	10.0	10.0	3.5
		59.0	73.0	14.0	14.0	3.5
RDD0017	Supreme	26.0	40.0	14.0	11.0	3.2
RDD0018	Supreme	122.0	151.0	29.0	13.0	2.6
RDD0021	Supreme	56.0	68.0	12.0	9.5	2.3
RDD0025	Supreme	79.0	98.0	19.0	9.5	4.1

Table 2. Significant drillhole intersections in the Cumberland permit.

¹ true widths are estimated based on limited sectional interpretation and may change with additional data.

References

Lew, J.H. 1987. Final Report on exploration in Merrijigs PL 31863 Reefton, New Zealand 15-10.81 to 15.10.87. CRA Exloration Co Ltd.

Anon. Reports, correspondence and newspaper extract - Scotia and Cumberland mines, Reefton 1918 - 1941. Mines Department, Ministry of Energy.

Knight, A.S. 1994. PL 31-2175, Cumberland / Merrijigs Technical Report for 1993. Macraes Mining Company Limited.

Magner, P, Winward.S. 1996. PL 31-2175, Cumberland Progress and final report on prospecting activities, 1995 – 1996. Macraes Mining Company Limited.

Dunphy, M.C. 1998. Reefton Gold Project 1998 Supreme Prospect Manual Polygonal Resource Estimate (SUEX98a). Macraes Mining Company Limited.

Dunphy, M.C. 1998. 1998 West Inkerman Prospect Manual Polygonal Resource Estimate (WIEX98a). Macraes Mining Company Limited.

Silversmith, P. 1998. 1998 Merrijigs Prospect Manual Polygonal Resource Estimate (MJEX98a). Macraes Mining Company Limited.

James, Z. 2005. Reefton Gold Project: Mapping and Steam Sediment Sampling Program. June-October 2005. EP 40-183. OceanaGold (New Zealand) Limited.

Whetter, N. 2006. Supreme Prospect Drilling Program. OceanaGold (New Zealand) Limited.

Whetter, N. 2007. Inkerman Prospect Drilling Program. OceanaGold (New Zealand) Limited.

Whetter, N, Reynolds, L. 2007. Merrijigs Database Compilation Status EP 40821. OceanaGold (New Zealand) Limited.

Whetter, N, McCulloch, M. 2008. Supreme Prospect Drilling. OceanaGold (New Zealand) Limited.

Jober, S Scott, J, Blakemore,H. 2010. Merrijigs Permit Report as of October 2010. OceanaGold (New Zealand) Limited.

McLelland, R, McIntosh, C. 2012. Progress report for MP 41164 Happy Valley. OceanaGold (New Zealand) Limited.

McLelland, R. 2015. Borehole Road and Supreme Diamond Drilling – MP 41164 Globe Progress. OceanaGold (New Zealand) Limited.

Tenement Status

The Company confirms that all the Company's tenements remain in good standing. The Company has applied an exploration permit to replace the Reefton South prospecting permit that expired on the 7th of August 2022 (Figure 1) The Barrons Flat permit expired on 26th September and a 4-year Appraisal Extension has been applied for. The company was granted the Cumberland Exploration permit on the 14 December 2022. No tenements were disposed of during the quarter. The Company further confirms that as at the end of the quarter the beneficial interest held by the Company in the various tenements has not changed. Details of the tenements and their locations are set out in Annexure 1. The company now has over 1,096sqkm of applications and granted tenements.

For further information, please visit <u>www.sirengold.com.au</u> or contact:

Brian Rodan – Managing Director Phone: +61 (8) 6458 4200 Paul Angus – Technical Director Phone: +64 274 666 526

This announcement has been authorised by the Board of Siren Gold Limited.

Competent Person Statements

The information in this announcement that relates to exploration results is based on, and fairly represents, information and supporting documentation prepared by Mr Paul Angus, a competent person who is a member of the Australasian Institute of Mining and Metallurgy. Mr Angus has a minimum of five years' experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a competent person as defined in the 2012 Edition of the Joint Ore Reserves Committee Australasian Code for Reporting of Exploration Results. Mr Angus is a related party of the Company, being the Technical Director, and holds securities in the Company. Mr Angus has consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

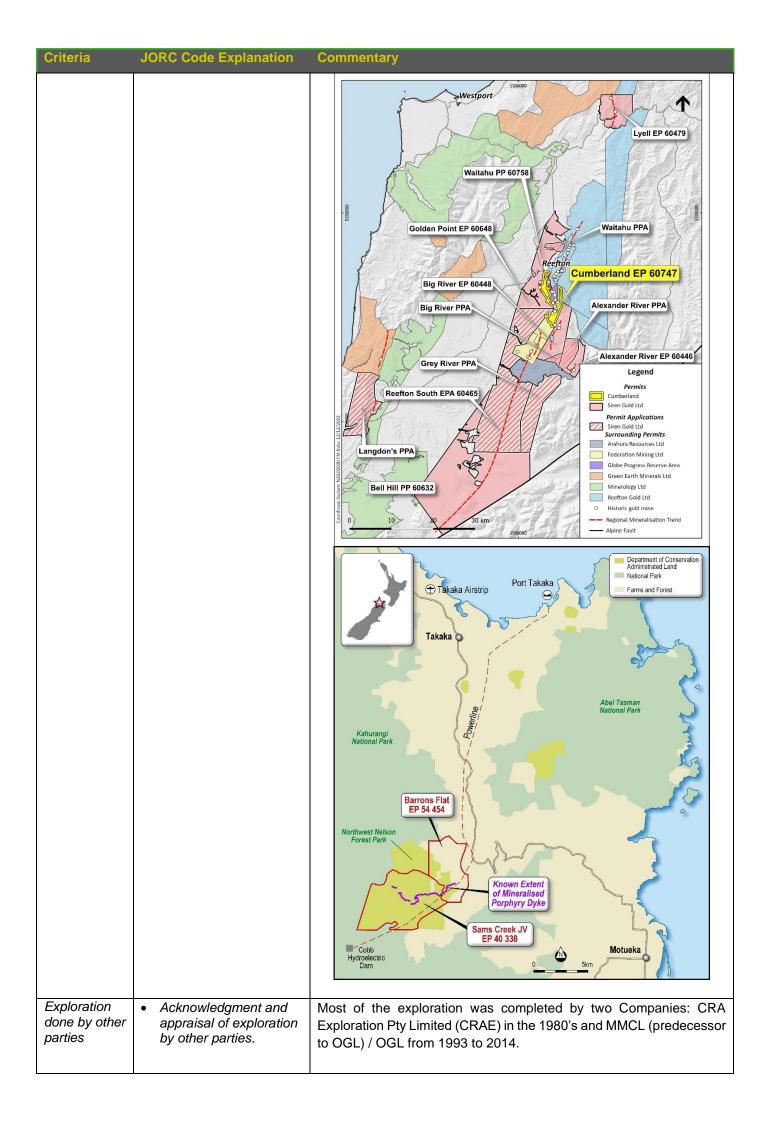
ANNEXURE 1 – TENEMENT SCHEDULE

TENEMENT / STATUS	OPERATION NAME	REGISTERED HOLDER	% HELD	GRANT DATE	EXPIRY DATE	AREA (HA)	AREA (km²)
EP 60446	Alexander River	RRL	100%	10 May 2018	9 May 2023	1,675.459	16.75
EP 60448	Big River	RRL	100%	20 June 2018	19 June 2023	4,847.114	48.47
EP 60479	Lyell	RRL	100%	13 December 2018	12 December 2023	5,424.592	54.24
EPA 60928	Reefton South	RRL	100%	application		25,519.0	25.52
EP 60648	Golden Point	RRL	100%	19 March 2021	18 March 2026	4,622.7	46.23
PP 60632	Bell Hill	RRL	100%	15 December 2021	14 December 2023	36,487.0	364.87
PP 60758	Waitahu	RRL	100%	17 December 2021	16 December 2023	4,991.1	49.91
PPA 60893.01	Langdons	RRL	100%	application		8,159.0	81.59
PPA 60894.01	Grey River	RRL	100%	application		7,419.0	74.19
EOL 60758.02	Waitahu	RRL	100%	application		692.1	6.92
EOL 60446.02	Alexander River	RRL	100%	application		2,341.0	23.41
EOL 60448.02	Big River	RRL	100%	application		569.8	5.70
EP 60747	Cumberland	RRL	100%	14 December 2022	13 December 2027	2,249.77	22.50
Total Reefton	n / Lyell					104,997.64	1,049.98
EP 40338	Sams Creek	SCG	81.9%	27 March 1998	26 March 2025	3,046.513	30.47
EP54454	Barrons Flat	SCG	100%	26 September 2012	26 September 2022	1,601.159	16.01
Total Sams (Creek					4,647.67	46.48
Total RRL						109,645.31	1,096.45

JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheid XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be required, such as where there is coarse gold that has inherent sampling problems. Unusit sample required, such as where there is coarse gold that has inherent sampling problems. Unusit samparant disclosure of detailed information. CRAE Soil samples were collected by a hand auger collected at 1m intervals across the structure or on geological boundaries. CRAE DC core samples were split in half using a core saw at 1m intervals across the structure or on geological boundaries. MMCL used similar DC sampling techniques as CRAE. OceanaGold Limited (OGL) soil sampled using a wacker drill to collect 0.5 kg sample of C-horizon & weathered bedrock. OGL DC core samples were split in half using a core saw at 1m intervals unless determined by lithology contacts. OGL DC that was not sawn in half for sampling, was run through a grinder with a 2-5-metre-long grind (chip) sample collected in all of the remaining core during early drilling at Inkerman and Supreme (2005 to 2010) OGL DC was sawn in half and non-mineralised section of the DC were not analysed from DC 2012 onwards. OGL core and channel samples were pulverised to >95% passing 75µm to produce a 30-50g charge for fire assay for Au.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). OGL Diamond drilling with DC diameters included PQ (96mm), HQ (63mm) and NQ (47.6mm) and OGL core was tripled tubed. CRAE and MMCL didn't record if diamond drilling was tripled tubed or not. All drilling was helicopter supported. The OGL HQ and PQ core was orientated using Ezimark system during Inkerman and Supreme drilling between 2005 and 2010. OGL drilling from 2011 onwards in Supreme, Gallant and Happy Valley Shear collected orientation data but no record to what system was used.


Criteria	JORC Code Explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 CRAE recorded recoveries as comments in geological logs. MMCL and OGL rrecorded drill run and with total core recoveries, RQD and core loss is recorded for each drill run. Core lost occurs around old workings where there are voids. Core recoveries have no noticeable basis has been observed thus far in the mineralisation.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All DC are logged for lithology, weathering, bedding, structure, alteration, mineralisation, jointing, colour and grain size using inhouse logging codes and that are very similar to previous logging by CRAE, MMCL and OGL exploration programs. All of the DC was geologically logged. The logging method is quantitative. MMCL and OGL core trays were reported to be photographed prior to core being sampled. All the core is stored at Reefton Coreshed where it can be accessed. Channel samples were logged for similar fields and lithological categories as DC.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 DC sample intervals from CRAE, MMCL & OGL were marked on the core, which was sawn in half lengthways with a diamond cutting saw. The resulting core was taken for the laboratory sample and remaining core was archived in the core box. CRAE & MMCL channel samples are chipped along 1m length into a sample bag using a geohammer OGL took DC duplicates and laboratory repeats were collected and assayed. MMCL recorded laboratory repeats for DC and channel sampling The DC (2-3 kg) and channel (1-2kg) sample sizes are considered appropriate to the grain and particle size for representative sampling. OGL sample preparation of DC were completed by SGS and Amdel Laboratories drying, crushing, splitting (if required) and pulverising to obtain analytical sample of 250g with >95% passing 75 µm.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 OGL DC of Happy Valley Shear 2011 & 2014 drilling Gallant & Supreme were sent to Westport, Reefton and Waihi, New Zealand for Au, As & Sb. SGS laboratories carry a full QAQC program and are ISO 19011 certified. Any DC samples with possible free gold were sent to ALS Townsville, Australia. Au analysed by 30g & 50g fire assay OGL wacker samples and selected DC were sent to ALS Townsville Selected samples were analysed for ICP multielement suite (ME-ICP61) of 33 elements. OGL up to 2011 used Amdel Laboratories at Macraes and Reefton mine sites testing for Au, As & S. MMCL DC, Soil and wacker samples & channel

Criteria	JORC Code Explanation	Commentary
	 Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 samples were analysed by ALS in Mt Maunganui, New Zealand for Au by fire assay/AAS and at Brisbane for Ag, As, Sb, Cu, Pb, Zn & Ca by ICP. Some soil & trench samples were analysed for Bi, Fe, Mn by ICP. CRAE did not record laboratory used but tested for Au, As, Ag, Sb, Cu, Pb & Zn for DC. Channel Samples were tested for Au & As and soil sampling for Au, As & Sb. OGL QAQC DC procedure was: At least two Au certified Rocklab standards At least one Blank. Laboratory duplicates Lab repeats were recorded. OGL Standards, duplicates and blanks are checked after receiving the results. If both standard assays were returned assay values outside two standard deviations of the actual value, the laboratory was requested to reassay the job. There are no reported QAQC procedures and resuts from MMCL and CRAE to date for Cumberland area but both companies were known to have QAQC SOP's for other projects.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 OGL laboratory assay results were received by OGL stored in both CSV and laboratory signed PDF lab certificates. There no PDF lab certs for MMCL ad CRAE results found to date. Assay results are in hardform with geology logs and reports. RRL data is stored in excel, GIS, Dropbox and Leapfrog. The data storage system is basic but robust. OGL used acQuire software to store their data. MMCL and CRAE data are in hard form in reports which both MMCL & OGL have historic data entered into acQuire and GIS software. No adjustments have occurred to the raw assay data.
Location of data points	 Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 MMCL picked up all the drilling using Chris Cole regristered surveroys as well as GPS baseline to survey off for trenches and channel sampling in New Zealand Map Grid (NZMG). OGL drillholes from Inkerman & Supreme drlling were picked up by Chris Cole Surveyors in NZMG OGL used Handheld GPS for placing and picking up the drillhole collars from 2012 onwards as well in NZMG CRAE completed completed down hole surveys between 30-50m intervals. MMCL drilling completed downhole surveys around every 50m and at EOH. OGL completed downhole surveys every 50m in the Inkermna and Supreme drilling from 2005 to 2011. OGL drilling from 2012 onwards at Gallant, Happy Valley Shear and Supreme completed downhole surveys every 30m. LiDAR has been flown over the area
Data spacing	Data spacing for reporting of Exploration Results.	 CRAE and MMCL channel and trench spacing was on range 5 to 70m spacing.

Criteria	JORC Code Explanation Co	ommentary
and distribution	 Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling ranges are variable depending on deposit. Zones with more drilling have ranges from 50 to150m centres both along strike and down dip with drilling directions and distances being variable because of the different project's terrain and orientation of the target reef. Multiple drill holes are often drilled off each helicopter supported drill pad.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Channel samples were taken across the mineralisation at high angles to sample as true thickness. Drilling by all parties were planned to intercept the mineralisation at high angles but steeper angled drilling with drilling multiple holes from a single heli-drill pad can intercept the mineralisation at a lower angle as well as changes in the dip of the mineralisation. Oriented core and intact DC around mineralisation assists in understanding contacts, thickness and mineralisation orientation.
Sample security	The measures taken to ensure sample security.	 DC samples taken for the purposes of laboratory analysis were securely packaged on site and transported to the relevant laboratories by OGL staff. OGL samples were stored in a locked core shed until despatch.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No review of sampling techniques and data of recent sampling has been undertaken yet.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation C	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Company has tenements in Reefton, Lyell and Sams Creek in the top of the South Island of New Zealand. Tenements both granted (9), and applications (3) are shown in the map in maps below. All RRL tenements or applications are 100% owned by RRL. Al the tenements are largely within the Department of Conservation (DoC) estate. Minimum Impact Activity (MIA) Access Agreements have been issued by DoC for Alexander River, Big River, Golden Point, Auld Creek, Lyell, Sams Creek and Barrons Flat. DoC Access Agreements (AA) that allow drilling, have been granted for Alexander River, Big River, Golden Point and Sams Creek. Applications for Lyell and Auld Creek have been lodged. Variations to the AA's are require for additional drill sites.

Criteria JORC Code Explanation	Commentary
	CRAE
	 CRAE did initial field exploration, extensive literature research into past production during 1981 to 1983 with rockchip, soil sampling & mapping of underground workings as well as aeromagnetic survey over the whole Reefton Goldfield. 1984 to 1986 continued with a regional map, aerial photograpgy was flown, regional soil sampoing, IP survey over Inkerman and Supreme. Trenching was completed. A 1987 CRAE report (MR1505) completed by J Lew summarised the work competed on Merrijigs area. The Happy Valley Shear was traced for over 800m from trenching and 2 diamond drill holes (total of 309.2). The work concluded that the shear zone was on average 4.6m thick and had an average grade of 2.6 g/t Au. Trenching and channel sampling contuined. In 1988 to 1989 (MR2846) CRAE concentrated their drilling resources on Globe Progress and Blackwater areas while completing reconnaissance exploration over the rest of the goldfield.
	MMCL
	 MMCL created and compiled a GIS database in Techbase from CRAE previous work. MMCL completed three soil lines totalling 222 samples in 1993. During 1994-95, mapping, soil and rock chip sampling was completed around Globe to Empress and Supreme catchments as well mapping areas of glacial cover. During 1996 MMCL revisited Cumberland/Merrijigs with, geological mapping, 184 hand auger soils samples and 196 wacker samples collected on 100m spaced lines with a 20m sample interval. Areas of interest were infilled to 10m sample interval. A total of 611 rock samples were taken from outcrop and float material and CRAE trenches located and the ones best resampled. MMCL also undertook further trenching either by hand or small excavator. Mapping from undertaken from Inkerman West, Supreme down to A1 workings. A total of 1,164m of diamond drilling was completed in 11 holes testing the Happy Valley shear between Sir Francis Drake and Cumberland workings as well as testing the down dip continuity of Sir Francis Drake in 1996. In 1997, a total of 7 diamond drill holes were completed in Inkerman prospect for a total of 853.8m and 5 diamond holes were drilled into Supreme for 607.1m. In 1998 MMCL completed a manual polygonal resource estimates over West Inkerman and Happy Valley Shear using trenching and drilling results and data acquired from 1996-97 work. OGL In 2005 OGL compiled a GIS database of previous exploration paper records over the whole goldfield including Cumberland area. Seven diamond holes were drilled in Inkerman in 2007 for a total of 1030.5m. These holes infilled and tested the area

Criteria	JORC Code Explanation	Commentary
		 In 2006 OGL completed three main exploration phases in Supreme. OGL drilled a total of 24 diamond holes for 3,242.7m testing the lateral and down dip continuity of the Supreme deposit. Further drilling occurred in 2008 where 6 diamond holes were drilled for a total of 613.6m to increase the geological and resource confidence. In 2012 six holes for 805.4m were drilled in the Happy Valley Shear. The shear zone was intercepted in 5 holes with HVS003 hosting visible gold. Two more holes (for 515.4) were drilled to test a geochemical anomaly from trenching, soil and wacker sampling south of the Golden Lead workings. During 2013 OGL completed further work testing the Gallant and Sir Francis Drake prospects with drilling, wacker sampling, mapping and rock chip sampling. A total of 6 diamond drill holes were completed for a total of 1,289.9m. Visual gold was seen in the GAL001. A total of 57 wacker samples were also taken. In 2014, further drilling was completed at Supreme to test for the potential offset of the Globe Progress orebody on the western side of the Chemist Shop Fault. Two diamond drill holes for a total of 480.8m were collared in Tertiary's Brunner Coal Measures that lay to the south of Supreme.
Geology	Deposit type, geological setting and style of mineralisation.	 Gold mineralisation in the Reefton Goldfield is structurally controlled; the formation of the different deposit types is interpreted to be due to focussing of the same hydrothermal fluid into different structural settings during a single gold mineralisation event, however, some of the deposits (e.g. Globe-Progress, Big River) appear to have been re-worked, with gold and sulphide mineral remobilisation having occurred during a later phase of brittle deformation. In general, two end members of mineralisation styles exist, the "Blackwater Style" is comprised of relatively undeformed quartz lodes; whilst the "Globe-Progress Style" comprises highly deformed quart - pug breccia material with a halo of disseminated sulphide mineralisation. Three main structural deposit types appear to occur in the Reefton Goldfield. The Globe-Progress deposit occupies a distinct structural setting, where there is a clear break in the continuity and tightness of early folding. This break defines the east-west striking Globe-Progress shear zone. The fault splays off the Oriental-General Gordon shear zone. The geometry of the fault structure has allowed dilation and quartz vein deposition more or less contemporaneously with shearing, hydrothermal alteration, and low-grade mineralisation of the wall rocks. The broad disseminated mineralisation that now surrounds the Globe-Progress ore body is thought to have been formed by later movement on fault planes, in the presence of fluids, which led to some mobilisation and recrystallisation of metals and formed the halo of mineralised country rock. The Big River deposit shows similar paragenesis to Globe-Progress, except for the fact that the disseminated sulphide halo is not as extensive. The second structural deposit type hosts most gold deposits i.e., Big River South, Scotia, Gallant, Crushington, Capleston, an Alexander. These structures generally range from 1-15m

Criteria	JORC Code Explanation	Commen	itary						
		tł	nick an	ds associ	ated with	moder	at sheari	ng podd	y quartz
		lo	odes ar	nd dissemi	nated mine	eralisat	ion in the	wall roc	k.
		• T	he thir	d deposit t	ype occurs	s as ste	eply dipp	ing trans	gressive
		d	ilatant	structures	s, which a	are typ	pically no	ortheast	trending
					ld minera		•		-
		•		,	earlier, fa			•	
					weakness		•		
					movement		•		
					aused by				
				-	the hydrot	-	-		
Drillhole	A summary of all				Cumberlan			<u> </u>	
Information	information material to				ambonan		5100.		
	the understanding of the	HOLEID	Year	NZTM_E	NZTM_N	RL	Depth	Azimuth	Dip
	exploration results	GAL001	2013	1508726	5327981	628	146.3	315	-70
	including a tabulation of	GAL002	2013	1508726	5327981	628	123.7	270	-72
	the following information	GAL003	2013	1508726	5327981	628	86.7	220	-65
	for all Material drillholes:	GAL004	2013	1508771	5327724	667	244.8	256	-60
	 easting and northing of the drillhole collar 	GAL005	2013	1508771	5327724	667	334	285	-60
	\circ elevation or RL	GAL006	2013	1508612	5327914	615	354.4	90 75	-60
	(Reduced Level –	MJ1 MJ2	1987 1987	1508926 1508899	5326776 5327196	682 646	211.15 98.04	75 75	-50 -45
	elevation above sea	MJ3	1997	1508836	5327190	653	207.8	91.5	-60
	level in metres) of the	MJ4	1997	1508898	5327435	611	162.2	270	-60
	drillhole collar	MJ5	1997	1508868	5327318	636	88.3	50	-60
	o dip and azimuth of	MJ6	1997	1508763	5327464	604	109.4	93.5	-50
	the hole	MJ7	1997	1508953	5327112	668	87.2	90	-60
	 down hole length and intercontion donth 	MJ8 MJ9	1997 1997	1508980 1508980	5327018 5327018	674 674	51.5 80.6	90 90	-60 -70
	interception depth o hole length.	MJ10	1997	1508662	5327654	622	51.54	100	-50
	• If the exclusion of this	MJ11	1997	1508662	5327654	622	80.2	100	-55
	information is justified	MJ12	1997	1508662	5327654	622	73.9	52	-50
	on the basis that the	MJ13	1997	1508617	5327593	591	192.1	92	-60
	information is not	HVS001	2012	1508900	5327196	646	127.7	25	-55
	Material and this	HVS002 HVS003	2012 2012	1508900 1508900	5327196 5327196	646 646	120.7 126.4	112 125	-56 -70
	exclusion does not	HVS003 HVS004	2012	1508900	5327196	646	120.4	25	-70
	detract from the	HVS005	2012	1508890	5327093	676	135.8	72	-55
	understanding of the	HVS006	2012	1508837	5327193	653	160.1	270	-55
	report, the Competent Person should clearly	T38001	2012	1508687	5326195	722	323.4	180	-55
	explain why this is the	T38002	2012	1508687	5326195	722	192	140	-60
	case.	RDD0001 RDD0002	2007 2007	1508650 1508651	5328657 5328655	577 578	190.6 240.2	260 355	-60 -60
		RDD0002	2007	1508533	5328655	566	112.3	355	-60
		RDD0004	2007	1508490	5328614	576	121.2	320	-60
		RDD0005	2007	1508765	5328824	601	109.6	320	-60
		RDD0006	2007	1508737	5328787	601	106.1	320	-60
		RDD0007	2007	1508735	5328741	605	150.5	320	-60
		97RDD016	1997	1508564	5328788	541	175.8	90	-60
		97RDD022 97RDD023	1997 1997	1508652 1508618	5328657 5328798	577 558	119.7 151.8	320 90	-60 -50
		97RDD023	1997	1508626	5328677	566	71.3	141.5	-50
		97RDD029	1997	1508615	5328698	565	70.5	322	-60
		97RDD030	1997	1508578	5328677	561	141.9	322	-55
		97RDD031	1997	1508615	5328759	558	122.8	142	-54
		RDD0060	2008	1509441	5328549	562	91.2	320	-60
		RDD0061 RDD0062	2008 2008	1509442 1509392	5328548 5328516	562 566	100.3 131	0 60	-90 -80
		RDD0062	2008	1509392	5328515	567	130.9	320	-60
		RDD0064	2008	1509394	5328517	566	160.2	230	-70
		SUP001	2014	1509642	5328565	490	194.3	300	-60
		SUP002	2014	1509577	5328379	550	286.5	330	-65
		RDD0008	2006	1509357	5328527	584	160.7	270	-60
		RDD0009 RDD0010	2006 2006	1509373 1509374	5328406 5328406	574 574	83 40.6	270 270	-60 -60
		RDD0010 RDD0011	2006	1509374	5328406	565	40.6	90	-60 -60
	1		2000	1000200	3320021	303	137.3		~~

Data aggregation methods • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade trunceations (e.g. cutting of high grades) and cut- of tigrades are usually Material and should be stated. • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade trunceations (e.g. cutting of high grades) and cut- of tigrades are usually Material and should be stated. • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade trunceations (e.g. cutting of high grades) and cut- of tigrades are usually Material and should be stated. • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade trunceations (e.g. cutting of high grades) and cut- of tigrades are usually Material and should be stated. • In reporting Exploration Results, the procedure used for such aggregation should be stated and some hybrical examples of such aggregati	Criteria	JORC Code Explanation	Commen	tary						
Data aggregation methods • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of fight grades) and stated. • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of fight grades) and stated. • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of fight grades) and stated. • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of fight grades) and longer lengths of long- grade are usually Material and should be stated. • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and longer lengths of long- grade are usually Material and should be stated. • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and longer lengths of high- grade are usually Material and should be stated. • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and longer lengths of high- grade are usually Material and should be stated. • In reporting Exploration Results, weighting average CY2022 prices for gold and have adopt used a method be stated and some typical examples of such aggregation should be stated and some typical examples • Drilling results presented have used a weighted average wh presented factor = [US\$1,000/hone. For the prices, the AuEq factor using the above equation is 2.36.			RDD0012	2006	1509330	5328851	498	151.9	270	-60
Data aggregation methods•In reporting Exploration registion and or registion and or registion and or stated.•In reporting Exploration results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of figrades) and cut- of grades and cut- of grades and cut- of grades and cut- of grades and cut- of the registion and cut- stated.•In reporting Exploration results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of figrades) and cut- of grades and cut- of grades are usually Material and should be stated.•In reporting Exploration results, the ause of the same gold equivalent formula (AuE) factor, ti relative value of 1.0% antimony in the mine to 1.0% antimony in the mine to 1.0% antimony rocover).•In reporting factor registion stould be stated and some typical examples•In reporting factor registion stould be stated and some typical examples•Drilling results presented have used a weighted average who presenting drilling intercepts, hence, any potential samp length bias has been accounted for.Data aggregation should be stated and some typical examples•Drilling results presented have used a weighted average who presenting drilling intercepts, hence, any potential samp length bias has been accounted for.•Where aggregate intercepts incorporate short lengths of low- grade lexults aread for stuch aggregation should be stated and some typical examples•Drilling intercepts for optical fight on the mine on to 1.0% antimony in the mine to 1.0% antimony in the m			-							
Data aggregation methods• In reporting Exploration registions (e.g. cuting of high grades) and cut- of grades are usually Material and should be stated.• In reporting Exploration results, weighting averaging techniques, maximum and/or torigrades and cut- of grades are usually Material and should be stated.• In reporting Exploration results, weighting results, weighting raveraging techniques, maintum grade truncations (e.g. cuting of high grades) and cut- of grades are usually Material and should be stated.• In reporting Exploration results, the procedure used for such aggregation should be stated and some typical examples• In reporting Exploration results, the procedure used for such aggregation should be stated and some typical examples• In reporting Exploration results, the procedure used for such aggregation should be stated and some typical examples• In reporting Exploration results, weighting raveraging techniques, maintum grade truncations (e.g. cuting of high grades) and cut- of grades are usually Material and should be stated.• In reporting Exploration results, weighting raveraging techniques, maintum grade truncations (e.g. cuting of high grades are usually Material and should be stated.• In reporting Exploration results and the results and the results weighting raveraging techniques, maintum grade truncations (e.g. cuting of high grades are usually Material and should be stated and should be stated dnd some typical examples of high grades and usually material and should be stated and should be stated and			-							
Data aggregation methods • In reporting Exploration and for maximum and/or minimum grade truncations (e.g. cutting and channel samples are curren been accounted for. • Full database of Trenching and channel samples are curren been accounted for. • Where aggregation should be stated and some typical examples • String task used the same gold equivalent formula (AuEg = - g/t + 2.36 × 50 %) used by Mandalay Resources Lift for the grace during the should be stated and some typical examples • Diffling results presented have used a weighted average who grades and currently calculates its gold equivalent formula (AuEg = - g/t + 2.36 × 50 %) used by Mandalay Resources Lift for the grace during the should be stated and some typical examples • Where aggregation should be stated and some typical examples • Unspecified and have adopt prices, the AuEg factor = [US\$/tonne antimony prix a 0.01 x 0.95 antimony recovery]. • Manager addition of the state dard some typical examples • C2200 to 1000320 to										
Data aggregation methods • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grades are usually Material and should be stated. • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grades are usually Material and should be stated. • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grade results and longer lengths of low- grade results land longer lengths of low- grade results land longer lengths of low- grade results and longer lengths of low- grade results land longer lengths of low- grade results and longer lengths of low- grade results land longer lengths of low- grade results and longer lengths of low- grade results land longer lengths of low- grade results land longer lengths of low- grade results and longer lengths of low- grade results land longer lengths of low- grade results and longer lengths of low- grade results land longer lengths of low- grade results and low langtregations • Dril			-					100.7		-90
Data aggregation methods • In reporting Exploration methods • In reporting Exploration results, weighting averaging techniques, maximum and/or fing grades are usually Material and should be stated. • In reporting Exploration results, weighting averaging techniques, maximum and/or fing grades are usually Material and should be stated. • In reporting Exploration results, weighting averaging techniques, maximum and/or fing grades are usually Material and should be stated. • In reporting Exploration results, weighting averaging techniques, maximum and/or find grades are usually Material and should be stated. • In reporting Exploration results, weighting averaging techniques, maximum and/or find grades are usually Material and should be stated. • In reporting Exploration results, weighting averaging techniques, maximum and/or find grades are usually Material and should be stated. • In reporting Exploration results, weighting averaging techniques, maximum and/or find grades are usually Material and should be stated. • In reporting Cxploration results, weighting averaging techniques, maximum and/or find grades are usually Material and should be stated. • In reporting Cxploration results, weighting average CX2022 on the Mandalay Resources Corporation show the latest projection should be stated and some typical examples of such aggregation • In reporting Cxploration release the same goid equivalent (AuEq = -, gold in the mine as: AuEq factor = [USS/onee antimony costerfield Min currently calculates its goid equivalent formula (AuEq = -, gold in the mine as: AuEq factor = [USS/onee antimony prices (For such aggregations)			RDD0017	2006	1509412	5328561	576	122.4	22	-90
Data aggregation methods • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grades are usually Material and should be stated. • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grade results, the results and longer lengths of low- grade results and low and gregradions • Drilling results presented			RDD0018	2006		5328560	576	181.3	160	-65
Data aggregation methods•In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades and shuld be stated.•In reporting Exploration results and intercepts incorporate should be stated and some typical examples of such aggregation should be stated and some typical examples of such aggregation•In reporting Exploration results and intercepts incorporate should be stated and some typical examples of such aggregation•In reporting Exploration results and intercepts incorporate should be stated and some typical examples of such aggregation•In reporting Exploration results weighting average results, the procedure used for such aggregation should be stated and some typical examples•In reporting Exploration results weighting average results, the procedure used for such aggregation should be stated and some typical examples•In reporting Exploration results weighting average results in the results and intercepts incorporate should be stated and some typical examples•In reporting Calculates results and intercepts incorporate should be stated and some typical examples•In reporting Calculates results and intercepts incorporate should be stated and some typical examples•In reporting Calculates results and intercepts incorporate should be stated and some typical examples•In reporting Calculates results and intercepts incorporate should be stated and some typical examples•In reporting Calculates resultsIntercepts incorporate should be stated and some typical examples<			RDD0019	2006	1509527	5328503	503	142.35	320	-60
Data aggregation methods•In reporting Exploration rmainum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation•In reporting Exploration results, the procedure used for such aggregation should be stated and some typical examples of such aggregation•In reporting Exploration results, the procedure used for such aggregation should be stated and some typical examples of such aggregation•In reporting Exploration results, the procedure used for such aggregation should be stated and some typical examples•In reporting Exploration results, the procedure used for such aggregation should be stated and some typical examples•In reporting Exploration results, the procedure used for such aggregation should be stated and some typical examples•In reporting Exploration results•In reporting Exploration results•In reporting Exploration results••In reporting Exploration results••			RDD0020	2006	1509526	5328504	503	155.9	270	-60
Data aggregation methodsIn reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades and usually Material and should be stated.In reporting Exploration results and for grade results, the procedure used for such aggregation should be stated and some typical examples of a stated and some typical examples of such aggregation should be stated and some typical examples of a stated and some typical examples of such aggregation should be stated and some typical examples of such aggregationIn reporting Exploration results and truncations (e.g. cutting of high grades are usually Material and should be stated.In reporting Exploration results and topic the stated and some typical examples of such aggregation should be stated and some typical examplesDisk is base beach some typical examples topical examples of such aggregation should be stated and some typical examplesIntercepts intercepts and antimony topical examples topical examples topical examples of such aggregationsDisk is base beach and the some sources the same gold equivalent formula (AutEq = 1.00000000000000000000000000000000000			RDD0021	2006			503	118.5	360	-55
Data aggregation methodsIn reporting Exploration Results, weighting averaging techniques, maximum and/or methodsIn reporting Exploration results, weighting averaging techniques, maximum and/or methodsIn reporting Exploration results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cuting of high grades) and cut- off grades are usually Material and should be stated.In reporting fexploration results, the procedure used for such aggregation should be stated and some typical examples of such aggregationIn reporting Exploration relative value of 1.0% attruncy in the mine to 1.0 gram / ton grade results, the procedure used for should be stated and some typical examples of such aggregationIn the mine to 1.0 gram / ton grade results, the procedure used for such aggregationIntercepts incorporate should be stated and some typical examples of such aggregationData aggregation methods• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cuting of high grades) and cut- of grade results and longer lengths of high- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation should be stated and some typical examples of such aggregationNumere aggre			RDD0022	2006	1509526	5328504	503	125.4	22	-90
Data aggregation methodsIn reporting Exploration ranimum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grades are usually Material and should be stated.In reporting Exploration results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grade results, the procedure used for such aggregationIn reporting fechniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grade results, the procedure used for such aggregationIn reporting fechniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grade results, the procedure used for short lengths of high- grade results, the procedure used for short lengths of high- grade results, the procedure used for such aggregationIn reporting fechniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) of low- grade results and longer lengths of high- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregationIntercepts for gold and antimony tosts field and and and to grade results and longer lengths of high- grade resu			RDD0023	2006	1509526	5328504	503	145.15	22	-90
Data aggregation methodsIn reporting Exploration results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grades are usually Material and should be stated.In reporting Exploration should be stated and some typical examples of sub- sub- aggregation should be stated and some typical examples of sub- sub- aggregationIn reporting factor sub- results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grade results, the procedure used for should be stated and some typical examples of sub- sub- should be stated and some typical examples of sub- sub- sub- sub- aggregationIn reporting Exploration results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high- grade results, the procedure used for such aggregation should be stated and some typical examples of sub- grade results, the procedure used for such aggregation should be stated and some typical examples of sub- aggregationDirilling results presented have used a weighted average what procedure used for such aggregation should be stated and some typical examples of sub- such aggregationNone aggregation such aggregation such aggregationDirilling results the procedure used for such aggregation should be stated and some typical examples of sub- such aggregationNone aggregation such aggregationDirilling intercepts incorporate should be stated and some typical examples of sub- such aggregationSize add such aggregation should be stated and some typical examples of sub- sol										
Data aggregation methodsIn reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut of ligh decisal and should be stated.In reporting Exploration results and longer lengths of high- grade results, the procedure used for should be stated and some typical examples of such aggregationIn reporting fexploration results, the procedure used for should be stated and some typical examples of such aggregationIn reporting Exploration results, the procedure used for should be stated and some typical examplesIn reporting Exploration results, the procedure used for should be stated and some typical examplesDifiling results presented have used a weighted average wh presenting drilling intercepts, hence, any potential samp length bias has been accounted for.Use the intercepts incorporate short lengths of high- grade results, the procedure used for should be stated and some typical examplesImageregation should be stated and some typical examplesImageregation <td></td> <td></td> <td>HOLEID</td> <td>Year</td> <td>NZTM_E</td> <td>NZTM_N</td> <td>RL</td> <td>Depth</td> <td>Azimuth</td> <td>Dip</td>			HOLEID	Year	NZTM_E	NZTM_N	RL	Depth	Azimuth	Dip
Data aggregation methodsIn reporting Exploration Results, weighting 			RDD0024	2006	1509381	5328620	580	163.6	272	-60
Data aggregation methodsIn reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- of grade are usually Material and should be stated.In reporting Exploration stated.In reporting Exploration results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- of grade results, the procedure used for should be stated and some typical examples of such aggregationIn reporting Exploration results, the procedure used for should be stated and some typical examples of such aggregationIn reporting texploration results, the procedure used for such aggregationIn reporting feature stated and some typical examples of such aggregationIn reporting feature stated and some typical examplesIntercepts incorporate stated and some typical examplesIntercepts incorporate stated and some typical examplesIntercepts incorporate stated and some typica			RDD0025	2006	1509360	5328527	584	122.1	22	-90
Data aggregation methods•In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- of figrades are usually Material and should be stated.•In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- of grades are usually Material and should be stated.•In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- of grades are usually Material and should be stated.•In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- of grades are usually Material and should be stated.•Drilling results presented have used a weighted average wh procedure used for short lengths of high- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation•Drilling results and longer lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation••Procesure sed for such aggregation should be stated and some typical examples of such aggregation•••Procesure sed for such aggregation should be stated and some typical examples•••••••••••••••••••••• <td< td=""><td></td><td></td><td>RDD0026</td><td>2006</td><td>1509443</td><td>5328478</td><td>542</td><td>133.3</td><td>10</td><td>-55</td></td<>			RDD0026	2006	1509443	5328478	542	133.3	10	-55
Data aggregation methodsIn reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- of grades are usually Material and should be stated.In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- of grades are usually Material and should be stated.In reporting texploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- of grade results and longer lengths of high- grade results, the procedure used for should be stated and some typical examples of such aggregationIn reporting fexploration Results, the procedure used for should be stated and some typical examples of such aggregationIn reporting fexploration Results, the procedure used for should be stated and some typical examples of such aggregationIn reporting fexploration results to and longer lengths of low- grade results, the procedure used for should be stated and some typical examples of such aggregationIn the process incorporate should be stated and some typical examples of such aggregationIntercepts incorporate should be stated and some typical examples of such aggregationIntercepts incorporate should be stated and some typical examples of such aggregationIntercept incorporate should be stated and some typical examples of such aggregationIntercept incorporate should be stated and some typical examples of such aggregationIntercept incorporate should be stated and some typical examples of such aggregationInterept inter			RDD0027	2006	1509442	5328476	542	140.9	320	-55
Data aggregation methodsIn reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- of grade results and longer lengths of low- grade results and longer lengths of low- grade results, the procedure used for such aggregationIn reporting Exploration results presented have used a weighted average wh presenting drilling intercepts, hence, any potential samp length bias has been accounted for.Data aggregation methods• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- of grade results and longer lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation• In reporting Exploration Results, the procedure used for0197150937532845655189.9270-5097RDD0011997150937532852481145.5360460• Full database of Trenching and channel samples are current been compiled.•Full database of Trenching and channel samples are current been compiled.• Drilling results presented have used a weighted average wh presenting drilling intercepts, hence, any potential samp length bias has been accounted for.• Where aggregate intercepts incorporate should be stated and some typical examples of such aggregation•Drilling intercepts and longer lengths of low- data and should be stated and some typical examples of such aggregation•Nandalay Resources Corporation show the latest proje			RDD0028	2006	1509442	5328476	542	157.3	270	-55
Data aggregation methods • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cuttoff grades are usually Material and should be stated. • In reporting Exploration Results and should be stated. • Drilling results presented have used a weighted average wh presenting drilling intercepts, hence, any potential samples of truncations (e.g. cutting of high grades) and cuttoff grades are usually Material and should be stated. • Drilling results presented have used a weighted average wh presenting drilling intercepts, hence, any potential samples of truncations (e.g. cutting of high grades) and cuttoff grades are usually Material and should be stated. • Drilling results presented have used a weighted average wh presenting drillinole intercepts generally a 1g/t cut-off used. • Where aggregate intercepts incorporate short lengths of high-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations • Mandalay Resources Corporation show the latest projection for CY2022 prices for gold and US\$13,000/tonne. For the prices, the AuEq factor using the above equation is 2.36.			RDD0029	2006	1509473	5328446	525	158.2	350	-65
Data aggregation methods• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- of grade sare usually Material and should be stated.• In reporting fexploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- of grade results, the procedure used for short lengths of high- grade results, the procedure used for should be stated and some typical examples• In reporting Exploration results, the procedure used for such aggregation should be stated and some typical examples• Drilling results presented have used a weighted average wh presenting drilling intercepts, hence, any potential samp length bias has been accounted for.• Where aggregate intercepts incorporate short lengths of high- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation• Drilling results and longer lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation• Mandalay Resources Corporation show the latest projection average CY2022 prices for gold and antimony uS\$1,750/ounce gold and US\$13,000/tonne. For the prices, the AuEq factor using the above equation is 2.36.			RDD0030	2006	1509471	5328449	525	211.7	270	-65
Data aggregation methods• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grades are usually Material and should be stated.• In reporting fexploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grades are usually Material and should be stated.• Drilling results presented have used a weighted average wh presenting drilling intercepts, hence, any potential samp length bias has been accounted for.• Where aggregate intercepts incorporate short lengths of high- grade results, the procedure used for should be stated and some typical examples of such aggregation• Drilling results presented have used a weighted average wh presenting drilling intercepts, hence, any potential samp length bias has been accounted for.• Where aggregate intercepts incorporate short lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation• Drilling results and tonger lengths of low- grade results and longer lengths of low- grade results and should be stated and some typical examples of such aggregation• Mandalay Resources Corporation show the latest projection for CY2022 on the Mandalay website and have adopt average CY2022 prices for gold and antimony u			RDD0031	2006	1509472	5328446	525	190.5	22	-90
Data aggregation methods• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grades are usually Material and should be stated.• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grades are usually Material and should be stated.• Drilling results presented have used a weighted average wh presenting drilling intercepts, hence, any potential samp length bias has been accounted for.• When reporting drillhole intercepts generally a 1g/t cut-off used.• Drilling results presented have used a weighted average wh presenting drillhole intercepts, hence, any potential samp length bias has been accounted for.• Where aggregate intercepts incorporate short lengths of high- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations• Drilling results and longer lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation• Drilling results and longer lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation• Material and should be stated and some typical examples of such aggregation• Where aggregation should be stated and some typical examples of such aggregation• Material and should be stated and some typical examples of such aggregation• Material and should be stated and some typical examples of such aggregation			97RDD012	1997	1509455	5328576	551	121.5	330	-60
Data aggregation methods• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grades are usually Material and should be stated.• Drilling results presented have used a weighted average wh presenting drilling intercepts, hence, any potential samp length bias has been accounted for.• When reporting det truncations (e.g. cutting of high grades) and cut- off grades are usually Material and should be stated.• Drilling results presented have used a weighted average wh presenting drilling intercepts, hence, any potential samp length bias has been accounted for.• Where aggregate intercepts incorporate short lengths of high- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation• Drilling results and how grade results and longer lengths of aggregation should be stated and some typical examples of such aggregations• Drilling results and how grade results, the procedure used for such aggregation• Stated and some typical examples of such aggregations• Mandalay Resources corporation show the latest projection for CY2022 on the Mandalay website and have adopt average CY2022 prices for gold and antimony US\$1,750/ounce gold and US\$13,000/tonne. For the prices, the AuEq factor using the above equation is 2.36.			97RDD013	1997	1509521	5328576	521	88.4	360	-60
Image: Product 1 1997 1509593 5328592 481 145.5 360 -60 Image: Product 1 1997 1509593 5328592 481 145.5 360 -60 Image: Product 1 1997 Image: Product 1 1997 1509593 5328592 481 145.5 360 -60 Image: Product 1 1997 Image: Product 1 1997 1509593 5328592 481 145.5 360 -60 Image: Product 1 1997 Image: Product 1 1997 Image: Product 1 1997 1509593 5328592 481 145.5 360 -60 Image: Product 1 1997 Image: Product 1 1997 Image: Product 1 1997 Image: Product 1 1997 Product 1 1997 1509593 5328592 481 145.5 360 -60 Image: Product 1			97RDD014	1997	1509398	5328459	551	89.9	270	-50
 In reporting Exploration aggregation methods In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cutooff grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation stated and some typical examples of such aggregations stated aggregation stated and some typical examples of such aggregations stated and some typical examples of such aggregations stated addition the stated and some typical examples of such aggregations at the typical examples of such aggregation stated addition the typical examples of such aggregation stated addition the ty			97RDD020	1997	1509377	5328568	585	161.9	295	-65
Data aggregation methods• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grades are usually Material and should be stated.• Drilling results presented have used a weighted average why presenting drilling intercepts, hence, any potential samp length bias has been accounted for.• When reporting drilling intercepts, hence, any potential samp length bias has been accounted for.• When reporting drilling intercepts generally a 1g/t cut-off used.• Whene aggregate intercepts incorporate short lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations• Drilling results presented have used a weighted average why presenting drilling intercepts, hence, any potential samp length bias has been accounted for.• Whene aggregate intercepts incorporate should be stated and some typical examples of such aggregations• Drilling results presented have used a weighted average why presenting drilling intercepts, hence, any potential samp length bias has been accounted for.• Whene aggregation should be stated and some typical examples of such aggregations• Drilling results presenting drillhole intercepts and load and the mine as: AuEq factor = [US\$/tonne antimony present]• Mandalay Resources Corporation show the latest projection for CY2022 on the Mandalay website and have adopt average CY2022 prices for gold and antimony US\$1,750/ounce gold and US\$13,000/tonne. For the prices, the AuEq factor using the above equation is 2.36.			97RDD021	1997	1509593	5328592	481	145.5	360	-60
 detail. The assumptions used for any reporting of 	aggregation	 Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut- off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used 	p le V S C C C C C C C C C C C C C C C C C C	resenti ength b Vhen re sed. iiren ha / $t + 2.3$ costerfi urrently elative old in t 0.01 > 1.1034 fandala fandala for CY2 verage IS\$1,75	ng drilling ias has be porting d as used the $36 \times Sb \%$ eld mine y calculate value of 1. he mine as 0.95 ant 8 grams p ay Resource 0.2 on t 0.2 on t 0.2 So/ounce	intercept een accour rillhole inte e same go) used by . The g es its gole 0% antimo s: AuEq fa imony rec oer ounce o ces Corpo he Manda 2 prices gold anc	s, hence here for ercepts Id equive Manda old-antid d equive iny in the ctor = [overy] (c 0.93 c ration s lay we for (l US\$	ce, any generall valent for lay Resc imony (valent (A ne mine to US\$/tonr / [US\$/or gold reco show the ebsite an gold an 13,000/to	potential y a 1g/t rmula (<i>Au</i> purces Lt Costerfiel tuEq) fac o 1.0 gran ne antimo unce gol very]. latest pro d have d antimo nne. Fo	sample cut-off is uEq = Au d for the ld Mine ctor, the m / tonne ony price d price / ojections adopted nony of or these
		should be clearly stated.								

Criteria	JORC Code Explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The true drillhole intercept thickness has estimated from sectional interpretation of the mineralised zone.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	Refer to Figures 2 to 4 in the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Refer to Figures 2 to 4 in the announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Not applicable
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth	 Review and infill and extension of the soil sampling with lonic leach soil sampling to test for mineralisation under cover rocks.

Criteria	JORC Code Explanation	Commentary
	 extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Review and testing CRAE & MMCL trenchings and channel sampling with follow up trenching program. Structural mapping. Compilation of data into a database, GIS and Leapfrog software. Update of the Supreme resource model Re-analysis of the drill core and drill core pulps for stibnite. Drilling follow up after trenching and analsis of the data testing the shoots of Supreme, Gallant and Sir Francis Drake, Happy Valley Shear, Cumberland-A1 zone.