

ASX RELEASE

16 December 2021

ASX CODE: SNG

BOARD

Brian Rodan Managing Director

Paul Angus Technical Director

Keith Murray Non-Executive Director

HEAD OFFICE

Level 2, 41 – 43 Ord Street West Perth WA 6005

t: +61 8 6458 4200 e: admin@sirengold.com.au w: www.sirengold.com.au

New Mineralised Shoot intersected at Alexander River

Siren Gold Limited (ASX: **SNG**) (**Siren** or the **Company**) is pleased to provide an update on its recent exploration activities.

Highlights

- A new mineralised zone was intersected in AXDDH068a below the McVicar West shoot between 373m and 385m (12m) for a true thickness of approximately 8.5m. The interval returned 11.8m @ 1.60g/t Au, including 5m @ 2.2g/t Au. The zone comprised a moderate to strong acicular arsenopyrite mineralisation like AXDDH065 (5m @ 2.8g/t Au) that intersected the top of the McVicar West Shoot. It is interpreted that AXDDH068a intersected the top of a new shoot designated the Bull West Shoot. This is the third mineralised shoot in the same west dipping fault that includes the Loftus-McKay and McVicar West shoots. To further test the Bull West Shoot, a fan of holes can be drilled from approved drill pads that would cover a 500m strike length of the shoot.
- AXDDH074 intersected the McVicar West shoot 100m down plunge from AX63 (9.9m @ 6.4g/t Au). The hole intersected a 10m thick mineralised zone from 313m, including a 1m thick smokey quartz reef containing visible gold. This intersection extends the McVicar West shoot to over 300m down plunge, with six holes now drilled in the McVicar West shoot containing visible gold (Table 1).
- AXDDH066 was drilled into the historically mined (41,089 oz at an average grade of 26g/t Au) McVicar East Shoot and intersected a 9m thick (including a 1.2m void) disseminated acicular arsenopyrite zone above a 3.5m void that corresponds with Level 2 of the McVicar mine. A 1 2m thick quartz reef was mined on this level, that averaged around 40g/t Au according to the historic mine plans. The disseminated mineralisation above the reef assayed 7.8m @ 2.6g/t Au. If these two intercepts are combined, the premined shoot intersection would have been around 9m @ 7-8g/t Au. Only three other drillholes have been drilled into the McVicar East shoot, with AXDDH010 intersecting 6.5m @ 7.8g/t Au and AXDDH012 intersecting 8.5m @ 11g/t Au. AXDDH015 intersected several stopes. The McVicar East Shoot will be targeted in Q1 2022.

Exploration Activities

Alexander River

The Alexander River project (comprised of Exploration Permit 60446) is located ~26 km southeast of Reefton and overlays areas of the historic Alexander River Mine which produced 41,089 oz of gold at an average gold recovered grade of ~26g/t, until it closed in 1943.

Diamond drilling commenced at the Alexander River Project in September 2020, with a total of 70 holes drilled to date and two holes in progress for a total of 9,968m. Fifty-one holes for 8,846m have been drilled in 2021 (Table 3). Results have been received for 60 holes to date, with significant intercepts shown in Table 2.

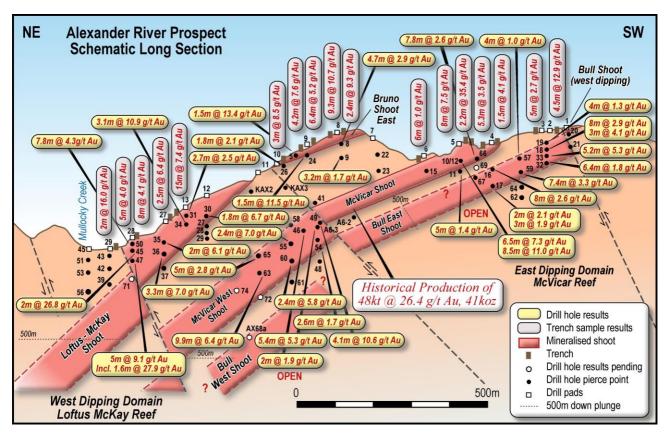


Figure 1. Schematic long section through Alexander River reef system.

Bull West Shoot

Zonge Engineering carried out a dipole-dipole resistivity and IP survey over part of the Alexander River tenement in 2010. A discontinuous chargeability high correlated with the main McVicar-Bruno mineralisation trend (Figure 2). However, a larger chargeability high appeared to indicate a deeper target north of the McVicar reef. The northern chargeability high is more extensive and has potentially more depth extent compared with the McVicar-Bruno anomaly. Initially, the northern anomaly was interpreted to represent a potential parallel mineralised fault zone in the hangingwall (Figure 2). However, several diamond holes drilled through this zone did not detect any reason for the IP anomaly. The northern chargeability high is represented by three distinctive bullseyes, numbered 1 to 3 on Figure 2. Anomaly-1 lies directly above the McVicar West Shoot. The IP Anomaly is around 150m wide, similar to the interpreted width of the Loftus McKay and McVicar West Shoots (Figure 1). The reason why Anomaly-1 lies above the McVicar West shoot is not clear. However, if Anomaly-1 represents the McVicar West shoot, then potentially Anomaly-2 and Anomaly-3 represent additional deeper shoots.

A vertical diamond hole: AXDDH068a, was drilled from Pad 41 to intersect the reef track below Anomaly-2. The reef track was estimated to be around 375m below surface. A mineralised zone was intersected between 373m and 385m (12m) for a true thickness of approximately 8.5m. The interval returned 11.8m @ 1.60g/t Au, including 5m @ 2.2g/t Au. The zone comprised a moderate to strong acicular arsenopyrite mineralisation like AXDDH065 (5m @ 2.8g/t Au) that intersected the top of the McVicar West Shoot (Figure 1). It is likely that AXDDH068a intersected the top of a new shoot designated the Bull West Shoot below Anomaly-2. AXDDH048, AXDDH061 and AXDDH072 were all drilled below the McVicar West Shoot and did not intersect any significant mineralisation (Figure 1), indicating a clear barren zone below the McVicar West Shoot that supports this interpretation.

To further test the Bull West Shoot, a fan of holes can be drilled from approved Pads 30 and 39 (Figures 2 and 5), that would cover a 500m strike length of the shoot.

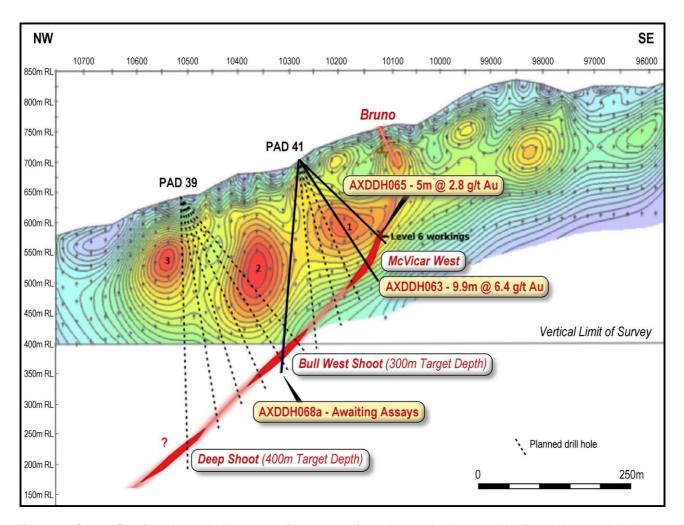


Figure 2. Cross Section through IP Anomalies 1-3, reef track and the Bruno, McVicar West and Bull West shoots.

McVicar West Shoot

AX74 was drilled from Pad 41 to intersect the McVicar West shoot 100m down plunge from AX63 (9.9m @ 6.4g/t Au). The hole intersected the mineralised zone between 312.8m and 322.5m (9.7m). The zone comprises a 1m thick smokey quartz reef with visible gold (Figures 3 and 4) followed by a 2m zone of quartz veining and strong acicular arsenopyrite mineralisation, with the remaining intersection showing moderate to weak disseminated arsenopyrite mineralisation. This intersection now extends the McVicar West shoot over 300m down plunge (Figure 1). Six holes now drilled in the McVicar West shoot have visible gold.

Figure 3. AX74 core showing smokey quartz reef in the hangingwall.

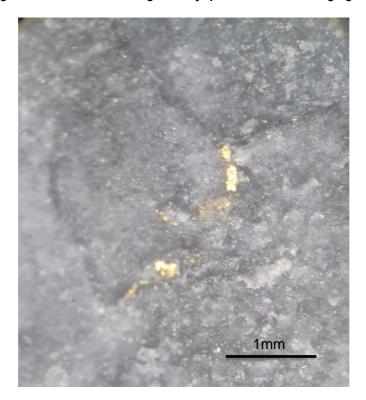


Figure 4. Visible gold in AX74 core.

Results were received for AXDDH065 that intersected the top of the shoot 50m above AXDDH063 (9.9m @ 6.4g/t Au). AXDDH065 intersected 9m @ 1.8g/t Au, including 5m @ 2.8g/t Au. Nine holes have now intersected the McVicar West shoot which extends down plunge for over 300m, with six holes containing visible gold and it is open at depth (Table 1 and Figure 1). The average thickness and grade of the drillholes to date is 4.2m @ 5.6g/t Au. As expected, the shoot thickness pinches and swells and ranges from 2m to 10m, with an average of 4.2m. The grade is also variable but, significantly, six of the nine holes contain visible gold and with relatively wide spaced drilling (100m x 50m) and small core samples this variability is expected.

Hole ID From To Interval Au (g/t) Visible Au A6-3* 130.6 137.0 6.4 5.0 no AXDDH046 208.0 210.0 2.0 1.9 no AXDDH049 198.5 202.6 4.1 10.6 yes AXDDH054 210.3 213.0 2.7 1.7 yes AXDDH055 214.6 2.4 7.0 217.0 yes AXDDH060 221.0 223.4 2.4 5.8 yes AXDDH063 261.1 271.0 9.9 6.4 yes 226.0 AXDDH065 231.0 5.0 2.8 no AXDDH074 312.8 322.5 9.8 awaited yes Weighted Average 4.2 5.6

Table 1. McVicar West shoot diamond drillhole intersections.

McVicar East Shoot

AXDDH066 was drilled from Pad 18 into the McVicar East Shoot and intersected a silicified disseminated acicular arsenopyrite zone between 58m and 67m, which included a 1.2m void. The hole then intersected a 3.5m void that corresponds with Level 2 of the historic McVicar mine. A quartz reef was mined on this level which averaged 1.3m at an average grade of 40g/t Au according to the historic mine plans. The disseminated mineralisation above the reef assayed 7.8m @ 2.6g/t Au. If these two intercepts are combined the pre-mined shoot intersection would have been around 9m @ 7-8g/t Au.

Only three other drillholes have been drilled into the McVicar East shoot, with AXDDH010 intersecting 6.5m @ 7.8g/t Au and AXDDH012 intersecting 8.5m @ 11g/t Au. AXDDH015 intersected several stopes. The McVicar East Shoot will be targeted in Q1 2022.

Hangingwall Reef

While drilling from Pad 18 a new mineralised structure was intersected approximately 30m above the Bull East reef track. This is a separate sub-parallel structure from the mineralised fault that contains the McVicar and Bull East shoots. The mineralised zone was around 7m thick and is composed of disseminated acicular arsenopyrite mineralisation. AXDDH067 intersected 6m @ 0.8g/t, Au including 1m @ 2g/t Au from 13m. This structure was also intersected in AXDDH069 and AXDDH070, with assay results awaited.

^{*} Drilled from Level 6

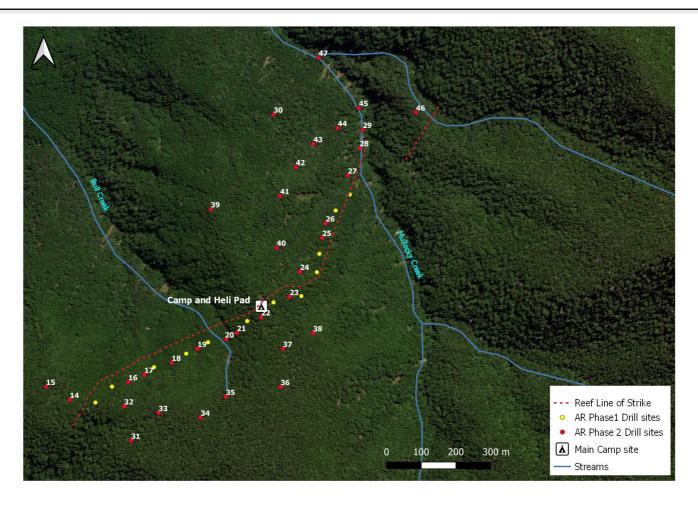


Figure 5. Location of approved drill pads along the Alexander River reef system.

Table 2. Significant Alexander River drilling results.

Hole ID	Shoot	From (m)	To (m)	Interval	True Thickness	Au (g/t)
				(m)	(m)	
AXDDH008	Bruno East	23.3	28.0	4.7	4.5	2.9
AXDDH010	McVicar East	28.2	35.0	6.9	5.0	7.3
AXDDH012	McVicar East	24.0	32.5	8.5	8.0	11.0
AXDDH016	Bull East	62.0	70.0	8.0	7.0	2.6
AXDDH018	Bull East	26.0	34.0	8.0	7.0	2.9
		47.0	50.0	3.0	2.5	4.1
AXDDH024	Bruno East	22.8	24.3	1.5	1.2	11.5
AXDDH030	Loftus-McKay	52.5	54.3	1.8	1.8	6.7
AXDDH033	Loftus-McKay	117.0	123.0	5.2	5.2	5.3
AXDDH034	Loftus-McKay	43.0	46.0	3.0	2.5	10.8
AXDDH035	Loftus-McKay	46.0	48.0	2.0	2.0	6.1
AXDDH036	Loftus-McKay	62.7	66.0	3.3	3.0	7.0
		30.0	32.0	2.0	2.0	26.8
AXDDH047	Loftus-McKay	56.0	61.0	5.0	3.5	9.1
	incl	56.0	57.6	1.6	1.1	27.9
AXDDH049	McVicar West	198.5	202.6	4.1	4.1	10.6

ASX RELEASE

AXDDH050	Loftus-McKay	4.2	26.0	21.8	21.8	2.3
	incl	4.2	12.0	7.8	7.8	4.3
AXDDH055	McVicar West	214.6	217.0	2.4	2.4	7.0
AXDDH059	Bull East	127.0	134.4	7.4	6.0	3.3
AXDDH060	McVicar West	221.0	223.4	2.4	2.4	5.8
AXDDH063	McVicar West	261.1	272.0	9.9	9.9	6.4
	incl	264.1	269.0	4.9	4.9	12.0
	incl	264.1	264.8	0.7	0.7	43.1
AXDDH065	McVicar West	225.0	234.0	9.0	8.5	1.8
	incl	226.0	231.0	5.0	4.5	2.8
AXDDH066	McVicar East	58.0	67.0	7.8	7.8	2.6
AXDDH068	Bull West	373.0	384.8	11.8	8.5	1.6
		375.0	380.0	5.0	4.0	2.2

Authorised by the Board of Siren Gold Limited

Brian Rodan

Managing Director

Phone: +61 (8) 6458 4200

Paul Angus

Technical Director

Phone: +64 274 666 526

Competent Person Statement

The information in this announcement that relates to exploration results and exploration targets, is based on, and fairly represents, information and supporting documentation prepared by Mr Paul Angus, a competent person who is a member of the Australasian Institute of Mining and Metallurgy. Mr Angus has a minimum of five years' experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a competent person as defined in the 2012 Edition of the Joint Ore Reserves Committee Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Angus is a related party of the Company, being the Technical Director, and holds securities in the Company. Mr Angus has consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Table 3. Alexander River drilling data.

Hole	Hole ID	Pad	Easting	Northing	Dip	Total
Number					Azimuth	Depth
1	AXDDH008	8	1513206	5312727	-60/320	96.7
2	AXDDH009	8	1513206	5312727	-82/320	110.0
3	AXDDH010	5	1512936	5312598	-60/320	61.2
4	AXDDH011	5	1512936	5312598	-85/320	70.3
5	AXDDH012	5	1512936	5312598	-50/320	35.5
6	AXDDH013	6	1512989	5312639	-60/320	52.8
7	AXDDH014	6	1512989	5312639	-85/320	84.6
8	AXDDH015	6	1512989	5312639	-75/320	94.0
9	AXDDH016	4	1512861	5312540	-65/290	76.5
10	AXDDH017	4	1512861	5312540	-90/290	122.5
11	AXDDH018	3	1512737	5312498	-90/300	69.6
12	AXDDH019	3	1512737	5312498	-60/300	47.1
13	AXDDH020	1	1512692	5312438	-60/300	64.2
14	AXDDH021	1	1512692	5312438	-82/300	85.6
15	AXDDH022	7	1513130	5312673	-60/320	74.2
16	AXDDH023	7	1513130	5312673	-75/320	112.0
17	AXDDH024	9	1513270	5312764	-90/000	45.3
18	AXDDH025	9	1513270	5312764	-60/155	70.3
19	AXDDH026	10	1513331	5312814	-90/000	51.2
2020 Total	<u> </u>	1		<u>I</u>	l	1,422.4
20	AXDDH027	12	1513385	5312992	-65/110	89.4
21	AXDDH028	12	1513385	5312992	-85/110	117.6

22	AXDDH029	12	1513385	5312992	-90/000	157.0
23	AXDDH030	12	1513385	5312992	-52/110	96.5
24	AXDDH031	13	1513426	5313038	-90/000	49.0
25	AXDDH032	32	1512775	5312427	-63/320	156.1
26	AXDDH033	32	1512775	5312427	-55/320	130.0
27	AXDDH034	13	1513426	5313038	-72/290	88.0
28	AXDDH035	27	1513420	5313093	-60/115	68.0
29	AXDDH036	27	1513420	5313093	-90/000	82.5
30	AXDDH037	27	1513420	5313093	-74/290	156.3
31	AXDDH038	29	1513463	5313225	-70/110	33.9
32	AXDDH039	29	1513463	5313225	-70/290	165.0
33	AXDDH040	38	1513320	5312638	-66/320	119.3
34	AXDDH041	38	1513320	5312638	-50/320	238.5
35	AXDDH042	29	1513463	5313225	-90/000	85.7
36	AXDDH043	29	1513463	5313225	-60/110	75.0
37	AXDDH044	38	1513320	5312638	-70/320	343.0
38	AXDDH045	28	1513454	5313172	-90/000	42.3
39	AXDDH046	40	1513215	5312885	-64/154	235.0
40	AXDDH047a	28	1513454	5313172	-68/320	10.0
41	AXDDH047b	28	1513454	5313172	-75/320	94.8
42	AXDDH048	40	1513215	5312885	-74/177	355.1
43	AXDDH049	40	1513215	5312885	-54/170	280.8
44	AXDDH050	28	1513454	5313172	-55/110	40.6
45	AXDDH051	45	1513452	5313288	-60/120	137.6
46	AXDDH052	40	1513215	5312885	-65/345	281.2
47	AXDDH053	45	1513452	5313288	-85/120	86.1
48	AXDDH054	40	1513215	5312885	-63/167	37.0
49	AXDDH054a	40	1513215	5312885	-63/167	10.0
50	AXDDH054b	40	1513215	5312885	-63/177	248.5

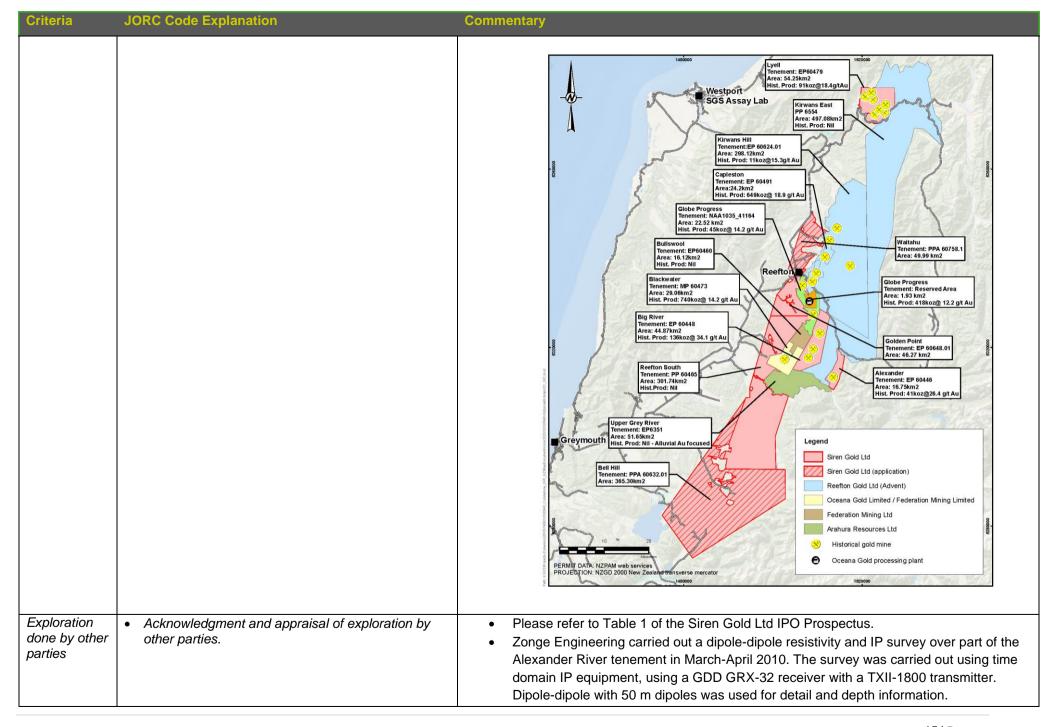
Project 1	Total					9,967.9
2021 Total				8,546.1		
72	AXDDH074	41	1513215	5313030	-74/095	325.7
71	AXDDH073	44	1513391	5313230	-71/150	164.7
70	AXDDH072	41	1513215	5313030	-56/145	344.6
69	AXDDH071	44	1513391	5313230	-76/140	217.5
68	AXDDH070	18	1512912	5312552	-56/140	52.2
67	AXDDH069	18	1512912	5312552	-79/320	124.5
66	AXDDH068a	41	1513215	5313030	-90/000	414.0
65	AXDDH068	41	1513215	5313030	-90/000	30.0
64	AXDDH067	18	1512912	5312552	-83/320	128.3
63	AXDDH066	18	1512912	5312552	-60/320	74.1
62	AXDDH065	41	1513215	5313030	-63/140	265.9
61	AXDDH064	16	1512802	5312461	-83/340	173.0
60	AXDDH063	41	1513215	5313030	-63/140	291.4
59	AXDDH062	16	1512802	5312461	-90/000	225.0
58	AXDDH061	40	1513215	5312885	-90/000	311.8
57	AXDDH060	40	1513215	5312885	-81/110	253.0
56	AXDDH059	16	1512802	5312461	-71/340	141.0
55	AXDDH058a	45	1513452	5313288	-60/115	243.0
54	AXDDH058	45	1513452	5313288	-60/115	102.0
53	AXDDH057	16	1512802	5312461	-55/340	142.5
52	AXDDH056	45	1513452	5313288	-80/290	144.6
51	AXDDH055	40	1513215	5312885	-72/115	271.5

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Soil samples were collected with a spade or auger. The C-zone was targeted with around 300gms collected. Samples were stored in waxed paper bags. Outcrop channel samples were generally collected at 1m intervals across the structure to get a true thickness. Samples were collected with a geological hammer and stored in calico bags. Diamond core (DC) was used to obtain samples for geological logging and sampling. DC core samples were split in half using a core saw at 1m intervals unless determined by lithology i.e. Quartz vein contacts. Channel samples were taken on 1m sample lengths with 1-2 kg sample size using a geological hammer. Core and channel samples were pulverised to >95% passing 75µm to produce a 30g charge for fire assay for Au. Multi-element is now undertaken by pXRF on the returned Au pulps from SGSAll core is rolled into plastic splits from the triple tube spilt at the drill rig and then placed into the core trays. This provides a far better quality of core with preservation of structures and broken core with less handling of the core.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond drilling with DC diameters included PQ (96mm), HQ (63mm) and NQ (47.6mm) and are tripled tubed. Drilling is helicopter supported. The HQ and PQ core are orientated using Reflex orientation gear


Criteria	JORC Code Explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Full run and geotechnical logging with total core recoveries, RQD and core loss is recorded for each drill run. Core occurs around old workings where there are voids. Core recoveries for the program so far around 91 to 93%. Highly shattered rock around puggy fault gouge zones are the areas where core loss can occur. No noticeable basis has been observed thus far in the mineralisation.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All DC are logged for lithology, weathering, bedding, structure, alteration, mineralisation, jointing, colour and grain size using a standard set of inhouse logging codes and template that is very similar to previous logging by OceanaGold Limited (OGL) exploration programs. The logging method is quantitative. All core trays were photographed prior to core being sampled. Channel samples were logged on the same lithological categories as DC.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 DC sample intervals were marked on the core, which was sawn in half lengthways with a diamond cutting saw. The resulting core was taken for the laboratory sample and remaining core was archived in the core box. Channel samples are chipped along 1m length into a sample bag. Field duplicates as quarter core, laboratory duplicates and laboratory repeats were collected and assayed. The field duplicates are DC quarter cuts taken every 25 samples. The DC (2-3 kg) and channel (1-2kg) sample sizes are considered appropriate to the grain and particle size for representative sampling. Field duplicates of the channel samples have been taken in some mineralised sections. Sample preparation of DC and Channel samples by SGS Laboratories in Westport comprises; drying, crushing, splitting (if required) and pulverising to obtain analytical sample of 250g with >95% passing 75 µm where Au is assayed by 30g fire assay by SGS Waihi. 48 element suite completed by SGS Australia is undertaken using ICP-MS up to drillholes AX23 and BR24. For later drillholes and channel samples the pulps returned from the lab were analysed by Siren with a portable XRF (pXRF).
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Soil samples were sent to SGS in Westport to be analysed by low detection gold DC and Channel samples are sent to SGS Westport and Waihi, New Zealand. SGS laboratories carry a full QAQC program and are ISO 19011 certified.

Criteria	JORC Code Explanation	Commentary
laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Multielement are sent to SGS Townsville, Australia for IMS40Q which is ICP-MS analysis after DIG40Q four acid digest. Holes drilled after AX232 and BR24 were analysed by pXRF. For each DC drillhole the sampling includes: At least two Au certified Rocklab standards Two blanks. At least one field duplicate and laboratory duplicate per drill holes or taken every 25 samples. Lab repeats are recorded. Standards, duplicates and blanks are checked after receiving the results. The QAQC results so far has been acceptable The QAQC populations for the exploration program to date have is not large enough to measure accuracy and precision of the sampling program. RRL has a full working pXRF protocol and QAQC procedures for operation of the pXRF for analysis of pulps and samples. PXRF standards and blanks for used as well duplicate data being taken every 25 samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All laboratory assay results were received by RRL stored in both CSV and laboratory signed PDF lab certificates. Data is stored in excel, GIS, Dropbox and Leapfrog. The data storage system is basic but robust. A logging and QAQC standard operating procedure are being constructed. No adjustments have occurred to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Handheld GPS units (Garmin 62s and 64) were used for placing and picking up the drillhole collars as well as channel and rock chip sampling in New Zealand Transverse Mercator 2000 (NZTM). GPS accuracy was recorded. Reconciliation in GIS using NZ 50 topography map series and LINZ aerial (0.3m) series were also undertaken. LiDAR has been flown but the data and DTM have not yet been received. All drillhole collars will be picked by a surveyor at the end of the program.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Channel sampling was taken on 1m intervals where clean exposure was found. Drilling is occurring on 100 to 150m centres with drilling directions and distances being variable because of the terrain and orientation of the target reef. Multiple drill holes are drilled off each drill pad. A moderate dipping hole is drilled first then followed by a steeper drill holes to target down dip. The drill spacing down dip is around 50m.

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Channel samples were taken across the mineralisation to sample as true thickness. Drilling design is planned to intercept the mineralisation at high angles but steeper angled drilling with drilling multiple holes from a single heli-drill pad does intercept the mineralisation at a lower angle. Oriented core and intact DC around mineralisation assists in understanding contacts, thickness and mineralisation orientation.
Sample security	The measures taken to ensure sample security.	 DC and Channel samples taken for the purposes of laboratory analysis were securely packaged on site and transported to the relevant laboratories by Reefton Resources Limited staff. Samples were stored in a locked core shed until despatch.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No review of sampling techniques and data of recent sampling has been undertaken yet.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Companies tenements both granted (5), and applications (2) are shown in the map below. All RRL tenements or applications are 100% owned by RRL. All the tenements are within the Department of Conservation (DoC) estate. Minimum Impact Activity (MIA) Access Agreements have been issued by DoC for Alexander River, Big River and Lyell and Reefton South. DoC Access Agreements (AA) that allow drilling have been granted for Alexander River (47 drill pads), Big River (12 drill pads) and Golden Point (22 pads). Variations to the AA's are require for additional drill sites. An AA variation for an additional 28 pads has been applied for at Big River.

Criteria	JORC Code Explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 Gold mineralisation in the Reefton Goldfield is structurally controlled; the formation of the different deposit types is interpreted to be due to focussing of the same hydrothermal fluid into different structural settings during a single gold mineralisation event, however, some of the deposits (e.g. Globe-Progress, Big River) appear to have been re-worked, with gold and sulphide mineral remobilisation having occurred during a later phase of brittle deformation. In general, two end members of mineralisation styles exist, the "Blackwater Style" is comprised of relatively undeformed quartz lodes; whilst the "Globe-Progress Style" comprises highly deformed quartz - pug breccia material with a halo of disseminated sulphide mineralisation. Three main structural deposit types appear to occur in the Reefton Goldfield. The Globe-Progress deposit occupies a distinct structural setting, where there is a clear break in the continuity and tightness of early folding. This break defines the east-west striking Globe-Progress shear zone. The fault splays off the Oriental-General Gordon shear zone. The geometry of the fault structure has allowed dilation and quartz vein deposition more or less contemporaneously with shearing, hydrothermal alteration, and low-grade mineralisation of the wall rocks. The broad disseminated mineralisation that now surrounds the Globe-Progress ore body is thought to have been formed by later movement on fault planes, in the presence of fluids, which led to some mobilisation and recrystallisation of metals and formed the halo of mineralised country rock. The Big River deposit shows similar paragenesis to Globe-Progress, except for the fact that the disseminated sulphide halo is not as extensive. The second structural deposit type hosts most gold deposits i.e., Big River South, Scotia, Gallant and Crushington, however, these are typically small, narrow, steeply plunging and consequently generally sub-economic. These deposits have formed in reverse shear zones that ar

Criteria	JORC Code Explanation	Commentary
Drillhole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	See Tables 2 to 4 in this announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Drilling results presented have used a weighted average when presenting drilling intercepts, hence, any potential sample length bias has been accounted for. When reporting drillhole intercepts generally a 2g/t cut-off is used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	The true drillhole intercept thickness has estimated from sectional interpretation of the mineralised zone.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	See Figure 1 included in this announcement.

Criteria	JORC Code Explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	See Table 4 in this announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Not applicable
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Diamond drilling is currently being undertaken at Alexander project with two heli-support drilling rigs. Drilling is planned to continue to the end of 2021 and beyond. 5,000m of diamond core is budgeted for Alexander and Big River projects in 2021, and 500m for Golden Point, at total 10,500m. Year to date 6,985 have been drilled at Alexander, 1,986m at Big River and 258m for a total of 9,103m. A budget for 1,397m remains. Drilling at Alexander will continue to target down dip extensions of the Loftus McKay, Bull and McVicar West shoots (see Figure 1).